Ehren Newman

Ehren Newman

Assistant Professor, Psychological and Brain Sciences

  • Psychology Building 347
  • Office Hours
    By Appointment Only


  • Postdoctoral, Boston University, 2008-2015
  • Ph.D., Princeton University, 2008
  • M.A., Princeton University, 2004
  • B.S., Brandeis University, 2002


How do neural circuits give rise to memory? To answer this question, we combine optogenetics, DREADDs, pharmacology, and behavioral manipulations with high-density tetrode and depth-probe recordings of neural activity in awake behaving rats. We are most interested in areas known as the hippocampus, medial septum, and entorhinal cortex, all of which have all been shown to have important roles in memory in humans and animals. We use computational modeling to bridge this experimental work and human memory processing. This work suggests that neural rhythms allow the brain to code, manipulate and store information and that these dynamics are regulated by acetylcholine.

We seek to characterize the functional circuit-level processes of memory with which specific disorders can be understood, diagnosed, treated and cured. Memory is well specified by cognitive principles such as encoding, mnemonic search, recall, proactive interference, and retrieval induced forgetting. In contrast, the processing dynamics behind these operations take place at the circuit level and remain woefully unspecified. Pathologies of memory associated with Alzheimer's Disease, post-traumatic stress disorder, schizophrenia, autism and normal aging place an enormous burden on individuals, relationships and societies. The development of treatments and cures for these pathologies require a functional understanding of the circuit-based mechanisms of memory.